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Abstract

Recently, the �-expansion and recursive renormalization group (RNG) theories as well as

approximation inertial manifolds (AIM) have been exploited as means of systematically model-

ing subgrid scales in large-eddy simulations (LES). Although these theoretical approaches are

rather complicated mathematically, their key approximations can be investigated using direct

numerical simulations (DNS). In fact, the di�erences among these theories can be traced to

whether they retain or neglect interactions between the subgrid-subgrid and subgrid-resolvable

scales. In this paper, we focus on the inuence of these two interactions on the evolution of

the resolvable scales in LES: the e�ectA which keeps only the interactions between the small

and large scales; and, the e�ectB which, on the other hand, keeps only the interactions among

the subgrid-subgrid scales. The performance of these models is analyzed using the velocity

�elds of the direct numerical simulations. Speci�cally, our comparison is based on the analy-

sis of the energy and enstrophy spectra, as well as higher-order statistics of the velocity and

velocity derivatives. We found that the energy spectrum and higher-order statistics for the

simulations with the e�ectA (referred to, hereafter, as modelA) are in very good agreement

with the �ltered DNS. The comparison between the computations with e�ectB (referred to,

hereafter, as modelB) and the �ltered DNS, however, is not satisfactory. Moreover, the decor-

relation between the �ltered DNS and modelA is much slower than that of the �ltered DNS

and modelB . Therefore, we conclude that the modelA , taking into account the interactions

between the subgrid and resolvable scales, is a faithful subgrid model for LES for the range of

Reynolds numbers considered.
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1. Introduction

Although direct numerical simulations (DNS) can be extremely useful in many areas related

to the study of turbulence physics and the assessment of theories, it is restricted to relatively low

Reynolds number (Re). Virtually all scienti�c and engineering calculations of nontrivial turbulent

ows at high Re are based on some type of modeling.

Large-eddy simulation (LES) is a logical `modeling extension' of DNS. LES is based on the

observation that the small scales are more universal in character than the large energy containing

scales of motion, that are primarily responsible for turbulent transport. LES is useful in the study of

turbulence physics at high Reynolds numbers that are unattainable by DNS. LES is also intended to

be useful in the development of turbulence models for the prediction of the complex ows of technical

interest where simpler modeling approaches fail [1]. In LES, the three-dimensional time-dependent

motion of these large scales are computed directly while the small scales are modeled (the so called

`subgrid scale modeling' problem; see [2] and [1]). Thus, the mechanism by which the subgrid

modes remove energy from large scale modes must be compensated for; and this compensation

is traditionally achieved by suitable enhancing the numerical value of the viscosity. However, it

is well known that this type of eddy viscosity models su�ers from a lack of phase information.

The minimum requirement for a subgrid modeling is that, at the very least, the energy spectrum is

preserved. Ideally, an LES �eld should be statistically the same as the large scales of a fully-resolved

DNS, not withstanding the inaccuracy in the representation of the small scale by a subgrid model

([3]).

Recently, the renormalization group theory (RNG) and approximate inertial manifolds (AIM)

have been applied to turbulence. The RNG methods fall into two distinct categories: (a) �-RNG,

pioneered by Forster et al. ([4]), and (b) recursive-RNG, pioneered by Rose ([5]). These techniques

have been criticized and compared ([6]-[11]) Unfortunately, there is no systematical study of these

theoretical approaches using direct numerical simulations. In this paper, we investigate the key

approximations of these theories using DNS. In particular, our objective is to �nd out the inuence
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of the small scale dynamics on the energy spectrum and higher-order statistics of the resolvable

scale evolution. This analysis leads to two interesting models.

2. Preliminary

Both the RNG and AIM approaches are iterative methods. However, for our purpose one needs

only to examine the removal of the �rst subgrid scale shell from the Navier-Stokes equation. We

denote k1 as the cut-o� wavenumber that separates the resolvable scales from the small scales and

introduce the usual notation

u�(k; t) =

�
u>� (k; t) if k1 < k < k0,
u<� (k; t) if k < k1,

where k0 is greater than the Kolmogorov wavenumber, and k represents jkj. For k < k1, the

resolvable scale Navier-Stokes equation is
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where M��(k) =
1

2i
[k�D�(k) + kD��(k)] and D��(k) = ��� � k�k�=k

2. For the subgrid scale,

k1 < k < k0, we have
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d3j[u<� (j; t)u

<
 (k� j; t)| {z }
I

+2u>� (j; t)u
<
 (k� j; t)| {z }
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>
 (k� j; t)| {z }
III

]: (2)

Equations (1) and (2) are very di�erent since the wavenumber k is in the resolvable and subgrid

scales, respectively. All three methods omit term (III) of the subgrid dynamical equation since it

is very small. Note that the comparable term (B) in equation (1) is not negligible.

One solves the small scales equation (2), and then substitutes it into the corresponding resolvable

scale equation. During the process, the �-RNG and AIM procedures make several approximations
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to (1) and (2).

2.1. �-Renormalization group

In �-RNG ([12]{[14]), one invariably introduces a zero-mean Gaussian random forcing term into

the Navier-Stokes equation. This white noise forcing is determined by its correlation function, which

is assumed to obey a subgrid wavenumber power-law spectrum. A small parameter � is introduced

into the exponent of this power-law. The method of �-expansion has been discussed in detail by

Kraichnan in [6].

Regardless of the details of the argument, the net e�ect of the �-RNG is to neglect term (A) of

(1) and term (I) of (2). Therefore, the dynamics of subgrid scales in the resolvable scale equation

is reected only in an approximated form of the term (B) in (1)

h @
@t

+ �0k
2
i
u<� (k; t) = M��(k)

Z
d3j[u<� (j; t)u

<
 (k� j; t) + u>� (j; t)u

>
 (k� j; t)| {z }
B

]; (3)

and for the subgrid scale, k1 < k < k0;

h @
@t

+ �0k
2
i
u>� (k; t) = M��(k)

Z
d3j[2u>� (j; t)u

<
 (k� j; t)| {z }
II

]: (4)

One calculates the e�ect of removing a small wavenumber shell on the Navier-Stokes equation. One

of the resulting e�ects is that the molecular viscosity is replaced by a turbulent viscosity. It is the

outcome after substituting the formal solution of (4) into term-B in the resolvable scale equation (1).

Furthermore, the distant interaction approximation, k ! 0, is taken which e�ectively introduces a

spectral gap between the subgrid and resolvable scales.

The formal solution of (2) has two contributions. We have considered the e�ect of the term (II)

above. Another e�ect from term (I) is the introduction of triple nonlinearities into the renormalized

equation. To recover the Kolmogorov energy spectrum, one must choose � = 4 while assuming that

the triple nonlinearities can be neglected [12]. Recently, Eyink [15] has claimed that this argument

is awed.
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2.2. Recursive renormalization group

The recursive RNG ([16]-[19]) has been developed and applied to subgrid scale modeling of

Navier-Stokes turbulence. The major di�erences between the two RNG procedures are that in the

recursive RNG:

� the �-expansion is not applied,

� the turbulent transport coe�cients are determined for the whole range of resolvable wavenum-

ber scales (with given small scale velocity correlation function), and

� triple nonlinearities are generated and retained in the renormalized Navier-Stokes equation.

2.3. Approximate inertial manifolds

In the AIM theory advanced by Foias, Manley, and Teman, ([20], [21]; referred to, hereafter, as

FMT), the evolution equation for the resolvable scale is approximated to

h @
@t

+ �0k
2
i
u<� (k; t) = M��(k)

Z
d3j[u<� (j; t)u

<
 (k� j; t) + 2u>� (j; t)u

<
 (k� j; t)| {z }
A

]; (5)

while for the subgrid scale, k1 < k < k0;

h @
@t

+ �0k
2
i
u>� (k; t) = M��(k)

Z
d3j[u<� (j; t)u

<
 (k� j; t)| {z }
I

+2u>� (j; t)u
<
 (k� j; t)| {z }
II

]: (6)

In mathematical language of AIM, inertial manifolds provide an interaction law between the small

and large scales of a ow. Following Kraichnan, FMT balanced the @u>

@t
with the term-II in (6).

As a result, the subgrid velocity modes are slaved to the resolvable scale ones

�0k
2u>� (k; t) = M��(k)

Z
d3j[u<� (j; t)u

<
 (k� j; t)]: (7)

At each step, FMT invoked some inequalities, which bound the appropriate norms of the solutions

to the Navier-Stokes equations. This procedure leads to a modi�cation of the momentum equation,
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viz the introduction of the triple nonlinear term. The resulting iterative procedure does not invoke

any statistical properties of the solutions of Navier-Stokes equations, since the interactions between

small scales, the term-B in (1), are omitted. Such a term can be rewritten into the enhanced eddy

viscosity by constructing an equation for the second moments.

Several numerical schemes related to AIM have been proposed. In these schemes, di�erent levels

are de�ned by projecting the ow into the small and large scales, which are then treated di�erently

using the time multilevel methods. Such numerical schemes lead to a model for the cross interaction

as well for the subgrid-subgrid interaction terms and the reader is referred to [22], [23], and the

references therein for details. For the latest developments in numerical computation, see recent

papers [24]{[26] in special issue of Theoret. Comp. Fluid Dynamics: \Inertial manifolds and their

application to the simulation of turbulence" [27].

3. Numerical experiments and simulated isotropic DNS ow �elds

3.1. Description of the DNS

The spatial discretization of (1) and (2) was achieved by a Fourier Galerkin method, where

the truncated nonlinear terms were computed by pseudo-spectral method. For time integration,

we used an exponential propagation of the linear part, which leads to an exact integration, and a

Runge-Kutta scheme of third order for the right-hand side (RHS) of the equations (1)-(2). For a de-

tailed description of the schemes and of the resolved equations, the reader is referred to [22] and [26].

3.2. Description of the models

To investigate the inuence of the nonlinear interaction terms (A) and (B) on the time evolution

of the resolvable scales u<� (k), we have implemented two models. In the �rst method, namedmodelA,

we compute u<;A� (k; t) with the equation (1) in which the term (B) is neglected:

h @
@t

+ �0k
2
i
u<;A� (k; t) = M��(k)

Z
d3j[u<;A� (j; t)u<;A (k� j; t) + 2u>;DNS

� (j; t)u<;A (k� j; t)]: (8)
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Here, u>;DNS corresponds to the small scales of the DNS velocity �eld uDNS that is obtained by

solving the full system (1), (2) without making any approximation regarding the nonlinear terms

(see [28] for a preliminary attempt to examine the e�ects of the cross interactions).

For the second method, named modelB, we evaluate u<;B� (k; t) with the equation (1) in which

the term (A) is neglected:

h @
@t

+ �0k
2
i
u<;B� (k; t) =M��(k)

Z
d3j[u<;B� (j; t)u<;B (k� j; t) + u

>;DNS
� (j; t)u>;DNS

 (k� j; t)]: (9)

These two models can be summarized as following. The modelA model keeps only the cross inter-

actions between the resolvable and subgrid scales while neglecting the inuence of the interaction

among small scales on the evolution of the large ones. The modelB, on the other hand, keeps the

subgrid interaction term, while neglecting the interactions between the subgrid-resolvable scales.

As it was pointed out before, the \modeled LES" �elds should be statistically the same as the

large scales of the DNS �eld. Hence, in order to check the validity of the modelA and modelB, the

solutions u<;A� and u<;B� are compared with u<;DNS
� , the �ltered DNS solution (fDNS).

3.3. Comparison of the LES models with �ltered DNS

For the sake of completeness, we compare the models with the �ltered DNS on several aspects.

The proper resolution of the resolvable scales and the resolution of the energy transfers can be

checked by evaluating the energy spectrum of the velocity �eld

E(k; t) =
1

2

X
jkj2[k� 1

2
;k+ 1

2
)

ju(k; t)j2: (10)

Since turbulence is isotropic, we have averaged over the spheric shell centered at k. Also the higher-

order moments of the distributions of a velocity component u1 and its longitudinal and transverse

gradients

�
@u1
@x1

�
and

�
@u1
@x2

�
are computed. The nth-order atness, denoted as Fn, is given by

Fn(v) = (�1)n
hvni

hv2i
n

2

; (11)
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where h�i denotes an ensemble average which corresponds to a volume average over the whole

domain. These quantities are important characteristics of turbulent ows. In particular, F3 and

F4 are the well known skewness and atness factors, respectively. The skewness factor of the

longitudinal derivative of velocity has been found to be independent of the Reynolds number and

is strongly associated with the inertial range scales. For a fully developed turbulent ow, F3(
@u1
@x1

)

should be of the order of 0:5: The atness factor of the longitudinal derivative of velocity is an

increasing function of the Reynolds number and is strongly associated with the dissipation range

scales.

Finally, a correlation coe�cient between the �ltered DNS and the LES �elds (as in [3]) is

evaluated

� =
hu:u0i

hu2i
1

2 hu02i
1

2

: (12)

This coe�cient � (�1 � � � 1) estimates the statistical independence of the �elds u and u0 and is

a function of the time t. For two velocity �elds that are identical in the large scales but di�erent

in the small scales, Leith and Kraichnan (cf. [29]) found that they will become decorrelated after

one eddy turnover time. Hence by computing the coe�cient �, we can measure how faithfully these

two models represent the �ltered DNS.

3.4. Simulated ow �elds

In next section, we present the results obtained with two simulations referred as S1 and S2

hereafter.

Statistical steady state: S1

As initial condition, we use the result from a 963 simulation, which has reached a statistically

steady state after integrating over 8; 000 time iterations. We consider that a ow becomes statisti-

cally steady when the time average of all its quantities (energy, enstrophy, spectrum, higher-order

moments, . . . ) are nearly time independent. Here, the resolution of the simulation is 1283 so that

the highest resolved wavenumber is k0 = 64. The time integration has been conducted over 27
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Table 1 : Characteristic parameters of the simulations S1 and S2:We denote by kF the wavenumber

of the external force and T is the �nal time of the integration.

Re� k�
k0
k�

k1
k�

T
� kF

S1 70 30 2 0.5 27 1

S2 70 53 1.2 0.3 12 2

eddy turnover times2. The Taylor microscale Reynolds number Re� is of the order of 70 for this

simulation. The Kolmogorov (dissipation) wavenumber k� was around 30 so that k0=k� ' 2. Here,

k� is de�ned as usually y k� =

�
"r
�3

� 1

4

and "r = 2�
Z +1

0
k2E(k)dk is the energy dissipation rate.

These values have been time averaged over the interval [0; 27� ]. The cut-o� wavenumber k1 was

chosen equal to 16; so that k1=k� is of the order of 0:5. With the choice of these parameters, the

simulation S1 is similar to the one described in [3].

The forcing term used is time independent and similar to the one used in [23]. In order to obtain

an inertial range su�ciently extended for such spatial resolution, the energy injection rate acts on

the lowest modes u(k; t) with jkj = kF = 1:

Perturbation of a random initial �eld: S2

The major di�erence between S2 and S1 is the initial condition. Here, we imposed a spectrum

E0(k) = c0 k
4 e

�

�
k
k2

�
2

(13)

where k2 = 4; instead of an initial k�
5

3 spectrum in S1. The external force is of the same type as for

S1 but kF was set to 2 instead of 1: The Reynolds number is of the same order i.e. Re� � 70: As

a result of these choices, the Kolmogorov wavenumber is larger, see Table 1 which summarizes the

characteristic parameters for both simulations, so that the small (DNS) scales for k > k1 contain

more energy than in the previous simulation.

2
The eddy turnover time � is de�ned as � =

L

U
where U =



juj2

�1=2
is a characteristic velocity and L =R +1

0
k
�1
E(k)dkR+1

0
E(k)dk

is an integral scale.
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4. Results

4.1 The velocity spectra

We �rst consider the results of simulation S1. Figure (1a) shows the energy and enstrophy

spectra corresponding to DNS, modelA and modelB at the intermediate time t = 13:5�: It is clear

that the modelA provides a better resolution of the resolvable scale energy spectrum. A departure

of the modelA spectrum from the fDNS spectrum can be noted near the cut-o�, however there is no

time ampli�cation (see Figure 1b showing the spectra at the �nal stage of the simulation T = 27� ).

We note that an energy pile-up appears near the cut-o� wavenumber k1 on the modelB spectrum.

This amount of energy, which is not dissipated, tends to accumulate and to modify the slope of

the spectrum for k < k1, even on short time integration. A such phenomenon does not appear

on the modelA spectrum. Hence, by taking into account the cross interaction term (A), a better

description of the energy transfers is achieved.

We now turn our attention to simulation S2. Figures (1c) and (1d) illustrate the energy and

enstrophy spectra at the intermediate time t = 6� and at the �nal integration time T = 12�;

respectively. At the intermediate time, we note that the modelA spectrum and the DNS spectrum

are very close, while the modelB spectrum exhibits a modi�ed slope. As in the previous simulation,

an energy pile-up near the cut-o� wavenumber appears on the modelB spectrum.

Figure (1d) reveals the limitation of the modelA at an extended simulation. We �nd that after

12 eddy turnover times, an energy pile-up also appears. Indeed, the accumulation of energy near the

cut-o� separation k1 perturbs the energy spectrum leading to the departure from the Kolmogorov

k�
5

3 inertial range scaling. Some improvement can be achieved by using an adaptive procedure to

choose the cut-o� wavenumber k1 between u
< and u> (see, for example, [23] and [26]).

It is interesting to note that for simulation S1, the curves of the modelA and fDNS spectra remain

close to each other even after 27 eddy turnover times. This can be explained by the fact that the

initial condition chosen for S2 induced strong perturbations during the transition period (indeed
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k0=k� ' 1:2 for S2 while k0=k� ' 2:0 for S1), leading to di�erent behaviors of the energy transfer

terms to achieve the equilibrium state. The reader is referred to Sec. 5 for additional discussion.

Time averaged compensated energy spectra of simulations S1 and S2 are presented on Figures 2.

4.2. The higher-order statistics

For the range of the Reynolds number Re� considered, the results of the DNS are in agreement

with the DNS results obtained by Jimenez et al. in [33]. In Tables 2 and 3, we present the higher-

order statistics of the velocity and of the velocity derivative for S1 and S2, respectively. In Table 2,

the values listed were time averaged over the time interval (0; 27� ) while in Table 3, the quantities

have been averaged over the time interval (0; 3� ):

First, as it was noted in [3], the fDNS values are more Gaussian than the values obtained from the

full DNS. This is a consequence of the lack of the small scales. When estimating the moments of

the �ltered DNS, one does not take into account the intermittency phenomena. By comparing the

values of the moments Fn(
@u1
@xj

) reported in Table 2, we �nd that the resolvable scale velocity �eld

from the modelA has rather similar statistics as that of the fDNS. In contrast, the resolvable scale

velocity �eld from the modelB has a tendency to be more Gaussian than the DNS and fDNS velocity

�elds. This is particularly evident on the moments of odd order. These results are con�rmed by

examining the higher-order statistics of S2 (Table 3): the higher-order statistics of the velocity

derivative estimated with modelB tends to be more Gaussian than the modelA �eld, which exhibits

the same statistics as the fDNS �eld.

We now consider the time evolution of the skewness and atness Fn(
@u1
@x1

); n = 3; 4 (cf. Figures

3 and 4) and of the atness F4(u1) (cf. Figures 5). For the simulation S1; we note that the skewness

obtained by the modelA and modelB have di�erent behavior and di�erent order of magnitude (Figure

3a), whereas the atness remain close to each other at the same order of magnitude (Figure 4a).

It appears that the odd order moments depend heavily on the inertial range (resolvable scales),

whereas the even order moments strongly depend on the dissipative range (subgrid scales). Indeed,
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Table 2 : Higher-order moments of the velocity component u1 and its longitudinal and transverse

gradients @u1
@x1

and @u1
@x2

. The values for a Gaussian �eld are listed for comparison.

u1
@u1
@x1

@u1
@x2

F4 F6 F3 F4 F5 F6 F4 F6

Gaussian 0:0 3:0 0:0 15:0

DNS 2:63 10:62 0:48 4:91 8:36 65:49 6:99 153:56

fDNS 2:63 10:52 0:40 4:09 5:18 36:78 5:34 69:45

ModelA 2:63 10:53 0:37 4:16 5:20 38:56 4:78 56:05

ModelB 2:55 9:88 0:24 4:03 3:60 36:16 4:35 42:05

as the fDNS, modelA and modelB compute only a part of the inertial range of the DNS spectrum

(k1=k� = 0:5), the values of the odd moments are directly a�ected while the even moments are

not. The modelA shows an improved performance over that of modelB on the time evolution of the

atness factor of velocity (Figure 5a). For the simulation S2 (k1=k� = 0:3), Figures 3b, 4b and 5b

show the time evolution of the skewness and atness corresponding to @u1
@x1

and u1: Their behaviors

are similar to that of S1: The velocity derivative skewness corresponding to the modelB decreases to

zero after less than one eddy turnover time, whereas the one corresponding to the modelA remains

close to the fDNS skewness until much later time. The change in skewness at t = 6� is consistent

with the behavior of the energy spectrum shown in Section 4.1. Furthermore, the modelA shows a

better performance over the modelB on both the atness factor of velocity derivative (Figure 4b)

and velocity (Figure 5b).

The focus of Shtilman and Chasnov's work [3] was on the higher-order statistics. They found

that the statistics of their LES model are in good agreement with the �ltered DNS �eld. Indeed,
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Table 3 : Higher-order statistics of the DNS, the �ltered DNS and both LES �elds.

u1
@u1
@x1

F4 F3 F4

Gaussian 0:0 3:0

DNS 2:96 0:54 4:60

fDNS 2:94 0:43 3:57

ModelA 2:94 0:44 3:59

ModelB 2:99 0:13 3:44

their DNS, �ltered DNS, and LES results on the higher-order statistics are very close to the present

results.

4.3. Correlation coe�cient

Figure 6 shows the time evolution of the correlation coe�cient, de�ned in (12), for the simulation

S1: As time increases, the correlation coe�cient between the fDNS and modelB decreases more

rapidly than that between the fDNS and modelA. After 10 eddy turnover times, the modelA

coe�cient remains of the order of 1, while the modelB coe�cient is close to 0.75. After this period

(i.e. for t > 10� ), both coe�cients have a similar behavior and decay as t=3, before reaching a short

plateau. This result shows the importance of the cross-interaction term (A) in subgrid modeling:

the cross interaction term provides not only the correct magnitude for the energy, but also the phase

information from the subgrid scale.

In [3], the correlation coe�cient � decays faster to zero: the LES and fDNS �elds become inde-

pendent after two eddy turnover times. The measured values of � here decrease much slower since
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the models investigated in this paper are more accurate. Indeed, in both modelA and modelB, a

part of the interaction terms is kept and computed directly with the small scales u>;DNS of the full

DNS. As a result, the velocity �elds u<;A and u<;B remain correlated with u<;DNS over a longer

period of time than the one obtained in [3].

5. Discussion

In [3], Shtilman and Chasnov compared the statistics of the �ltered DNS and a LES performed

with the eddy viscosity obtained by adjusting instantaneously the energy spectrum of the LES to

that of the DNS. Therefore, the agreement between the energy spectrum in �ltered DNS and LES

in their case is by construction. This should compare with present study where the energy spectrum

is preserved by taking into account the cross interactions explicitly (the modelA). In a short note,

Hossain ([28]) looked at the e�ect of the cross interaction term on the energy spectrum. He observed

that the cross interaction term plays an important role in maintaining the resolvable scale energy

spectrum near the cuto� wavenumber. However, his computation was done only at 323 and 643

resolutions. Furthermore, he did not study the e�ects of these cross interactions on the higher-order

statistics.

Our results con�rmed and further advanced the work by Zhou and Vahala ([18]) who examined

individual contributions to the energy transfer equation constructed from (1), namely

h @
@t

+ 2�0k
2
i
E(k; t) = T<<(k) + T><(k) + T>>(k); (14)

with k < k1: T
<<(k) gives the rate of energy transfer to mode k from interactions between the

resolvable scale velocity �elds;T><(k) is the energy transfer rate to mode k from the interactions

between resolvable scale and small scale modes; and T>>(k) is the transfer rate to mode k from the

interactions between small scale modes. Using LES and DNS data sets, Zhou and Vahala found that

T<<(k) moves the energy to higher resolvable scale wavenumbers { essentially to the last octave.
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T>>(k) removes energy throughout the resolvable scales in a manner consistent with the concept

of eddy viscosity. The term T><(k), on the other hand, removes energy from the last octave of

the resolvable scales which was transferred there by T<<(k) ([18]). Therefore, T><(k) and T>>(k)

correspond to the energy transfer due to local and nonlocal interactions, respectively. A detailed

study of locality of energy transfer and interactions in isotropic turbulence can be found in [30]-[32].

Near k1, T
><(k) prevails upon T>>(k); hence when T><(k) is neglected in the equations, as it is

done in modelB, the energy transferred by T<<(k) tends to accumulate for k near k1, leading to an

energy pile-up on E(k; t).

Hence, in agreement with [18], we found that the role of the cross interaction term in the

evolution of the resolvable scales can be summarized as follows:

� maintaining an energy balance,

� incorporating both local and nonlocal interactions,

� maintaining the Kolmogorov spectrum for the whole range of resolvable scales, and

� preserving the higher-order statistics (see discussion below).

We expect the cross interactions will remain an important contribution even at high Reynolds

numbers.

As shown in Zhou and Vahala [18], the energy transfer due to interactions among subgrid scales

(e�ectB)is the only contributor to the spectral eddy viscosity for k 2 [0; kc=2]. At the moderate

Reynolds number here, we have demonstrated that the inuence of e�ectB on resolvable scale

statistics are rather limited. However, at high Reynolds numbers, we expect that the e�ectB will

become more important. The modeling of this e�ect, however, is relatively easy since it is purely

dissipative [18].
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When the e�ect of the large-scale velocity �elds is very strong, the rapid distortion theory

(RDT)[34]-[36] is a satisfactory linear theory to describes the short time behavior of the ow. Since

the e�ect of the interactions among subgrid scales is weak in S1, the excellent agreement between

our modelA and fDNS may be interpreted using the language of RDT. Indeed, the term of the

e�ectA, u>u<, can be argued as a linear one in terms of u< from the point of view of the evolution

equation for the resolvable scales. The situation in S2 is di�erent. In this case, the strength of the

nonlinear term (interactions among subgrid scales) changes from weak to strong at about six eddy-

turn-over time scale � (see Figures (1c) and (1d)). This may o�er an explanation for the excellent

performance of the modelA at t = 6� but its relatively poor agreement with fDNS at t = 12�:

6. Conclusions

Using direct numerical simulations, we have studied the major approximations of RNG and AIM

approaches. In fact, the di�erences among these mathematically complicated theories can be traced

to whether they keep or neglect interactions between the subgrid-subgrid and subgrid-resolvable

scales. In this paper, we have paid special attention to the inuence of these two interactions on

the evolution of the resolvable scales. Along the way, our analysis leads to two \LES models": �rst,

the modelA which only keeps the interactions between the subgrid and resolvable scales; second,

the modelB which only keeps the interactions between the subgrid-subgrid scales. We have tested

the performance of these models using the velocity �elds from DNS. Speci�cally, we have compared

the energy and enstrophy spectra, as well as higher-order statistics of the velocity and velocity

derivatives. We found that the energy spectrum and higher-order statistics of the modelA are in

very good agreement with the �ltered DNS. However, the comparison between the modelB and the

�ltered DNS is not satisfactory. Finally, the decorrelation between the �ltered DNS and modelA

is much slower than that of the �ltered DNS and modelB. We conclude that the modelA, taking

into account the interactions between the subgrid and resolvable scales, is a faithful subgrid model
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for LES at moderate Reynolds number. We expect that the e�ectB will become more important

at higher Reynolds number. However, the modeling of this interaction is relatively easy since it is

purely dissipative.
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Figure 1a: Energy and enstrophy spectra at T = 13:5� (intermediate time) for the simulation S1:
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Figure 1b: Energy and enstrophy spectra at T = 27� (�nal stage of the time integration) for
the simulation S1: The normalized wavenumber is de�ned as k=k�, where k� is the Kolmogorov

wavenumber.
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Figure 1c: Energy and enstrophy spectra at t = 6� (intermediate time) for the simulation S2:
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Figure 1d: Energy and enstrophy spectra at T = 12� (�nal stage of the time integration) for the
simulation S2:
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Figure 2a: Normalized averaged kinetic energy spectra "
�

2

3

r k
5

3E(k) for the simulation S1; where "r
is the energy dissipation rate.
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Figure 2b: Normalized averaged kinetic energy spectra "
�

2

3

r k
5

3E(k), for the simulation S2:
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Figure 3a: Time evolution of the skewness factor of the velocity derivativeF3(
@u1
@x1

) for the simulation

S1: From Figures 3-6 the time is in units of an eddy turnover time.
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Figure 3b: Time evolution of the skewness factor of the velocity derivativeF3(
@u1
@x1

) for the simulation

S2:
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Figure 4a: Time evolution of the atness factor of the velocity derivative F4(
@u1
@x1

) for the simulation

S1:
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Figure 4b: Time evolution of the atness factor of the velocity derivative F4(
@u1
@x1

) for the simulation

S2:
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Figure 5a: Time evolution of the atness factor of the velocity F4(u1) for the simulation S1:
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Figure 5b: Time evolution of the atness factor of the velocity F4(u1) for the simulation S2:
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Figure 6: Time evolution of the correlation coe�cient � for the simulation S1:
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